Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A variety of classification approaches are used to facilitate understanding, prediction, monitoring, and the management of lakes. However, broad‐scale applicability of current approaches is limited by either the need for in situ lake data, incompatibilities among approaches, or a lack of empirical testing of approaches based on ex situ data. We developed a new geographic classification approach for 476,697 lakes ≥ 1 ha in the conterminous U.S. based on lake archetypes representing end members along gradients of multiple geographic features. We identified seven lake archetypes with distinct combinations of climate, hydrologic, geologic, topographic, and morphometric properties. Individual lakes were assigned weights for each of the seven archetypes such that groups of lakes with similar combinations of archetype weights tended to cluster spatially (although not strictly contiguous) and to have similar limnological properties (e.g., concentrations of nutrients, chlorophylla(Chla), and dissolved organic carbon). Further, archetype lake classification improved commonly measured limnological relationships (e.g., between nutrients and Chla) compared to a global model; a discrete archetype classification slightly outperformed an ecoregion classification; and considering lakes as continuous mixtures of archetypes in a more complex model further improved fit. Overall, archetype classification of US lakes as continuous mixtures of geographic features improved understanding and prediction of lake responses to limnological drivers and should help researchers and managers better characterize and forecast lake states and responses to environmental change.more » « less
-
Key Points We observed post‐wildfire increases in nutrients, dissolved organic carbon, sediments, and acidity and reduced water clarity in lakes Water quality responses were often persistent or cumulative throughout the summer, especially for lakes with tributaries from burned areas High‐severity and shoreline burns resulted in a nearly two‐fold increase in total phosphorus concentration compared to control lakesmore » « less
-
Abstract Multiple studies have reported widespread browning of Northern Hemisphere lakes. Most examples are from boreal lakes that have experienced limited human influence, and browning has alternatively been attributed to changes in atmospheric deposition, climate, and land use. To determine the extent and possible causes of browning across a more geographically diverse region, we examined watercolor and dissolved organic carbon (DOC) time series in hundreds of northeastern U.S. lakes. The majority of lakes have increased in both DOC and color, but there were neither coherent spatial patterns in trends nor relationships with previously reported drivers. Color trends were more variable than DOC trends, and DOC and color trends were not strongly correlated, indicating a cause other than or in addition to increased loading of terrestrial carbon. Browning may be pronounced in regions where climate and atmospheric deposition are dominant drivers but muted in more human‐dominated landscapes with a limited extent of organic soils where other disturbances predominate.more » « less
-
Abstract Although spatial and temporal variation in ecological properties has been well‐studied, crucial knowledge gaps remain for studies conducted at macroscales and for ecosystem properties related to material and energy. We test four propositions of spatial and temporal variation in ecosystem properties within a macroscale (1000 km's) extent. We fit Bayesian hierarchical models to thousands of observations from over two decades to quantify four components of variation – spatial (local and regional) and temporal (local and coherent); and to model their drivers. We found strong support for three propositions: (1) spatial variation at local and regional scales are large and roughly equal, (2) annual temporal variation is mostly local rather than coherent, and, (3) spatial variation exceeds temporal variation. Our findings imply that predicting ecosystem responses to environmental changes at macroscales requires consideration of the dominant spatial signals at both local and regional scales that may overwhelm temporal signals.more » « less
-
Abstract AimWe aimed to measure the dominant spatial patterns in ecosystem properties (such as nutrients and measures of primary production) and the multi‐scaled geographical driver variables of these properties and to quantify how the spatial structure of pattern in all of these variables influences the strength of relationships among them. Location and time periodWe studied > 8,500 lakes in a 1.8 million km2area of Northeast U.S.A. Data comprised 10‐year medians (2002–2011) for measured ecosystem properties, long‐term climate averages and recent land use/land cover variables. Major taxa studiedWe focused on ecosystem properties at the base of aquatic food webs, including concentrations of nutrients and algal pigments that are proxies of primary productivity. MethodsWe quantified spatial structure in ecosystem properties and their geographical driver variables using distance‐based Moran eigenvector maps (dbMEMs). We then compared the similarity in spatial structure for all pairs of variables with the correlation between variables to illustrate how spatial structure constrains relationships among ecosystem properties. ResultsThe strength of spatial structure decreased in order for climate, land cover/use, lake ecosystem properties and lake and landscape morphometry. Having a comparable spatial structure is a necessary condition to observe a strong relationship between a pair of variables, but not a sufficient one; variables with very different spatial structure are never strongly correlated. Lake ecosystem properties tended to have an intermediary spatial structure compared with that of their main drivers, probably because climate and landscape variables with known ecological links induce spatial patterns. Main conclusionOur empirical results describe inherent spatial constraints that dictate the expected relationships between ecosystem properties and their geographical drivers at macroscales. Our results also suggest that understanding the spatial scales at which ecological processes operate is necessary to predict the effects of multi‐scaled environmental changes on ecosystem properties.more » « less
An official website of the United States government
